
Using Feature Model Knowledge to Speed Up the
Generation of Covering Arrays

Evelyn Nicole Haslinger
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
evelyn.haslinger@jku.at

Roberto E.
Lopez-Herrejon

Institute for Systems
Engineering and Automation
Johannes Kepler University

Linz, Austria
roberto.lopez@jku.at

Alexander Egyed
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
Combinatorial Interaction Testing has shown great poten-
tial for effectively testing Software Product Lines (SPLs).
An important part of this type of testing is determining a
subset of SPL products in which interaction errors are more
likely to occur. Such sets of products are obtained by com-
puting a so called t-wise Covering Array (tCA), whose com-
putation is known to be NP-complete. Recently, the ICPL
algorithm has been proposed to compute these covering ar-
rays. In this research-in-progress paper, we propose a set
of rules that exploit basic feature model knowledge to re-
duce the number of elements (i.e. t-sets) required by ICPL
without weakening the strength of the generated arrays. We
carried out a comparison of runtime performance that shows
a significant reduction of the needed execution time for the
majority of our SPL case studies.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Algorithms, Performance, Theory

Keywords
product lines, combinatorial testing, pairwise testing, eval-
uation, feature model-based testing.

1. INTRODUCTION
In Software Product Line Engineering (SPLE) families of

systems are designed, rather than developing the individual
products separately [3, 6, 21]. The focus of SPLE lies on
software reuse, meaning that the individual products of a
Software Product Line (SPL) usually share a considerable

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VaMoS ’13, January 23–25 2013, Pisa, Italy
Copyright 2013 ACM 978-1-4503-1541-8/13/01 ...$15.00.

amount of source code. These products are distinguished by
the features they implement, where a feature is often defined
as an increment in program functionality [25].

Testing is a vital part of the development cycle of any
software system. However, because an SPL is a collection of
systems (frequently with a large number of members) spe-
cial considerations should be taken into account. Obviously
each product of the SPL could be tested using single sys-
tem testing techniques. This approach though, is usually
not feasible or too expensive because the number of differ-
ent products can be very large. Furthermore, such approach
can result in redundant test effort as the products within an
SPL usually share some of the functionalities they are of-
fering. Different techniques have been proposed to test the
products within an SPL more efficiently [8,17,19,22,24]. In-
cremental testing attempts to automatically adapt the avail-
able test cases using the knowledge about commonalities and
differences among the member products of the SPL [24]. In
combinatorial interaction testing a representative subset of
the products within the SPL is selected for testing [5].

This research-in-progress paper proposes two reduction
rules that can be used to enhance algorithms that extract
such subsets of products (i.e. so called t-wise Covering Ar-
rays (tCAs)) for combinatorial interaction testing. These
rules reduce the number of feature combinations from which
the representative product subset is selected without a neg-
ative impact of the test quality. We evaluated our approach
in 146 feature models, of 9 to 172 number of features, and
obtained a median execution time speedup of up to 88%.

2. BACKGROUND
This section outlines the motivation of combinatorial in-

teraction testing, variability modeling with feature models
in the context of combinatorial interaction testing and the
existing related work.

2.1 Feature Models
Feature Models (FMs) are the de-facto standard to model

variability in SPLE [6, 14], where they are used to express
which feature combinations are considered valid products.
An example of an FM of an SPL for printers is shown in
Figure 1. While the number of possible product configu-
rations is exponential in the number of features not all of
these products are valid. For instance, in our running ex-
ample the feature ”print sepia” may only be available if also
feature ”support colored prints” is selected.

Figure 1: Feature Model of Printer SPL

FMs are tree-like structures in which features are depicted
using labeled boxes. An FM has exactly one root feature,
i.e. feature print in our running example, that is selected in
every valid products configuration. Each feature may have
a set of child features with which it can interrelate in four
different types of relationships:

• mandatory child features: these features have to be
selected whenever their parent is selected (e.g. feature
test page in the printer SPL).

• optional child features: these features may or may not
be selected if their parent is selected (e.g. feature du-

plex print in the printer SPL).

• inclusive-or relations: for these features holds that at
least one feature of the group needs to be selected if
their parent is selected (e.g. features back-white and
support colors form an inclusive-or relation in the
printer SPL).

• exclusive-or relations: for these features holds that ex-
actly one feature of the group needs to be selected if
their parent is selected (e.g. features local printer

and network printer form an exclusive-or relation in
the printer SPL).

Apart from these child-parent relations there are also so
called Cross Tree Constraints (CTCs). These constraints
are denoted using propositional logic formulas. CTCs are
used to capture constraints that are not covered by the FM
tree.

2.2 Combinatorial Interaction Testing
Combinatorial interaction testing aims to tackle some of

the problems imposed by testing SPLs, namely the large
number of products that need to be tested and the resulting
redundant test effort. The basic idea of combinatorial inter-
action testing is to select a representative subset of products
where interaction errors are more likely to occur [5], rather
than testing the complete product family. There are three
steps to apply combinatorial interaction testing:

1. Choose a subset of the products within the SPL.

2. Configure and implement these products.

3. Apply single system testing on the set of selected prod-
ucts.

This research-in-progress paper focuses on step one of com-
binatorial interaction testing, meaning to select a proper
subset of products on which single system testing is applied.
An approach to select the products for combinatorial inter-
action testing are so called t-wise covering arrays (tCAs).

As mentioned earlier the products within an SPL are dis-
tinguished by the set of features they implement, formally
they can be represented using feature sets.

Definition 1. Feature List (FL) is the list of features in
a software product line.

For our running example the feature list is
FL=[print, print duplex, turn page, print test

page, black/white, support colors, print sepia,

local printer, network printer, network interface,

reset].

Definition 2. Feature Set (FS) is a 2-tuple [sel,sel] where
sel and sel are respectively the set of selected and not-selected
features of a member product. Let FL be a feature list, thus
sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL. The terms
p.sel and p.sel respectively refer to the set of selected and
not-selected features of product p1.

An example of a feature set for our printer SPL is
ts1=[{print, print test page, black/white, local

printer, reset}, {duplex print, turn page, sup-

port colors, print sepia, network printer, network

interface}].

Definition 3. A t-set ts is a is a 2-tuple [sel,sel] repre-
senting a partially configured product, defining the selection
of t features of feature list FL, i.e. ts.sel ∪ ts.sel ⊆ FL ∧
ts.sel ∩ ts.sel = ∅ ∧ |ts.sel ∪ ts.sel| = t. We say t-set ts is
covered by feature set fs iff ts.sel ⊆ fs.sel ∧ ts.sel ⊆ fs.sel.

Definition 4. We say a feature set fs is valid in feature
model fm, i.e. valid(fs, fm) holds, iff fs does not contra-
dict any of the constraints introduced by fm2. A t-set ts is
valid if there exists a valid feature set fs that covers ts.

The feature set ts1 mentioned above is an example of a valid
feature set of the printer FM. The 2-set [{local printer, net-
work printer}, {}] is an example of an invalid t-set, because
the two features local printer and network printer can-
not be selected together in the same product.

Formally we can now define a t-wise covering array as:

Definition 5. A t-wise covering array tCA for a feature
model FM is a set of valid feature sets that covers all valid
t-sets of the software product line.3

If we use a 1-wise CA to select the subset of products to
test we make sure to verify whether a product behaves faulty
if a certain feature is included or not included. For 2-wise
CAs we make sure to test whether all possible interactions
among two features A and B behave erroneously. A study by
Kuhn et. al [16] has shown that:

• When using 1-wise CAs it is likely to detect 50% of
the defects.

• When using 2-wise CAs it is likely to detect 70% of
the defects.

1Definition based on [4].
2Such constraints are introduced by child parent relation-
ships and additional CTC that are expressed as proposi-
tional logic formulas and are obtained as described in [4].
3Definition inspired by [13].

• When using 3-wise CAs it is likely to detect 95% of
the defects.

The generation of t-wise covering arrays is an instance of
the set-cover problem, which has been proven to be NP com-
plete [15], meaning that no efficient algorithms are known
to generate minimal t-wise covering arrays.

3. REDUCTION RULES FOR T-SETS
This section describes a set of reduction rules that can be

used to speed up the generation of t-wise CAs.

3.1 Generating t-wise CAs as an Instance of
the Set-Cover Problem

The generation of t-wise CAs is an instance of the set-
cover problem [13]. The set-cover problem states that there
is some universe U that contains all the elements that need to
be covered, then there is a set S whose elements are subsets of
U. An optimal solution to the set-cover problem is a minimal
subset S’ of S for which holds

⋃
S’ = U [2].

Let FM be a feature model describing the valid combina-
tions among features in feature list FL, let products be the
set of valid feature sets in FM and let V be the set of all valid
t-sets in FM. Then V and products can be mapped as follows
to the set-cover problem:

• The set of valid t-sets V is the universe U of the set-
cover problem, i.e. the set of elements that need to be
covered.

• The set of valid feature sets products corresponds to
the set S, where each feature set in products covers a
subset of t-sets in V.

• The minimal subset S’ of S is then a minimal t-wise
covering array.

Every algorithm that generates a t-wise CA for a given
feature model FM needs to resolve two problems:

1. Determine the universe U of the set-cover problem, i.e.
set of valid t-sets V in FM.

2. Select a subset S’ of S that covers the universe U, i.e.
select a subset of the set of valid feature sets products.

To determine the set of valid t-sets V, all t-sets that can
be formed for features in feature list FL need to be checked
whether they are valid in feature model FM. The number
of possible t-sets is A*B, where A = |FL|!

t!*(|FL-t|!)
denotes the

number of different subsets of size t that can be formed by
the elements in FL and B = 2t represents the number of
possible combinations among t features.

The universe U (i.e. the set of all valid t-sets V) of this
specific instance of the set-cover problem tends to grow fast
in the number of features in feature list FL. In this paper,
we propose a set of reduction rules for V that compute a
subset core ⊂ V, for which holds that any t-wise CA for
core will also cover V. In other words, rather than suggesting
an improvement to the procedure used to select a subset of
products, we propose to reduce the size of the problem input
V, while still guaranteeing the t-wise array coverage.

The following sections describe the two reduction rules
and analyze their rationale.

3.2 t-sets Containing the Root Feature
Our first reduction rule is concerned with the root feature

of a feature model FM. By definition any valid feature set
of FM needs to select the root feature, having as a result
that each t-set ts that deselects the root feature r, in other
words, r ∈ fs. sel, is invalid.

If the feature list FL of feature model FM contains more
than t features (i.e. |FL|>t), then all t-sets containing the
root feature r can be safely removed from the set of all valid
t-sets V without weakening the generated tCA. The condi-
tion |FL|>t is needed because to generate a t-wise coverage
at least t features are necessary. If removing the t-sets con-
taining the root feature r reduces V to the empty set, then
t-wise coverage could not be guaranteed.

Let us now more formally describe this rule. Let tr be a
valid t-set where root feature r is selected. If |FL|>t holds,
then there exists a valid t-set t’ that selects and deselects
the same features as tr, except that instead of root feature
r an additional feature f is element of either the sel or sel
set of t’, i.e. tr.sel\{r} ⊆ t’.sel ∧ tr.sel ⊆ t’.sel

and f ∈ t’.sel ∨ f ∈ t’.sel.
Let fs be a valid feature set that covers t’, then fs also

covers tr:

• Because fs covers t’ the condition t’.sel ⊆ fs.sel

∧ t’.sel ⊆ fs.sel holds.

• Because the root feature r has to be included in every
valid feature set the condition r ∈ fs.sel holds.

• As we know that tr.sel\{r} ⊆ t’.sel ⊆ fs.sel ∧
tr.sel ⊆ t’.sel ⊆ fs.sel and r ∈ fs.sel we can
derive that fs also covers tr.

For example tr could be tr=[{print, black}, {sup-

port}] then t’ could be t’=[{black, duplex}, {sup-

port}]. A valid feature set fs for the feature model shown
in Figure 1 that covers t’ is:
fs=[{print, print test page, reset, duplex, turn

page, black/white, local}, {support, network prin-

ter, network interface}]

Please notice that fs does not only cover t’ but also tr. In
other words, this reduction rule does not weaken the t-wise
coverage.

3.3 t-sets Containing Mandatory Features
Our second reduction rule is concerned with mandatory

child features. A mandatory child feature has to be selected
whenever their parent is selected, and they must not be se-
lected when their parent is not selected. Hence, for every
valid feature set fs holds that a feature f and its manda-
tory child feature fmand are either both selected or deselected,
i.e. {f, fmand} ⊆ fs.sel ∨ {f, fmand} ⊆ fs.sel. If the
feature list FL of feature model FM contains more than t fea-
tures that are neither the root feature nor mandatory child
features, then all t-sets containing a mandatory child feature
fmand can be safely removed from the set of all valid t-sets V

without weakening the generated tCA.
Let tf be a t-set containing a feature f that has a manda-

tory child fmand feature in FM and let tmand be a t-set that
contains the same sets of selected and deselected features as
tf , except that feature f is replaced by fmand, i.e.

• If f ∈ tf.sel then tmand = [tf.sel\{f} ∪ {fmand},

tf.sel].

• If f ∈ tf.sel then tmand = [tf.sel, tf.sel\{f} ∪
{fmand}].

Let fs be a valid feature set that covers tf, then fs also
covers fmand:

• Because fs covers tf the condition tf.sel ⊆ fs.sel

∧ tf.sel ⊆ fs.sel holds.

• If f ∈ fs.sel holds then we know that tmand.sel=tf.sel
⊆ fs.sel and tmand.sel\{fmand} ⊆ fs.sel, as each
valid feature set that selects a feature f has also to
include its mandatory child fmand we now that fs cov-
ers tmand.

• If f ∈ fs.sel holds then we know that tmand.sel=tf.sel
⊆ fs.sel and tmand.sel\{fmand} ⊆ fs.sel, as each valid
feature set that deselects a feature f has also to exclude
its mandatory child fmand we now that fs covers tmand.

For example tf and tmand could be:
tf=[{network printer, print sepia}, {duplex print}]

tmand=[{network interface, print sepia}, {duplex

print}]. Consider Figure 1 to determine a feature set
fs that covers tf. An example of a valid feature set fs

covering tf is:
fs = [{print, print testpage, reset, black/white,

support colors, print sepia, network printer, net-

work interface}, {local printer, duplex print,

turn page}].
Please also notice that fs does not only cover tf but also

tmand.

4. EVALUATION
To evaluate the reduction rules presented in this paper we

adapted the ICPL algorithm. The following sections provide
more details on this algorithm, the set up of our evaluation
and present the results we obtained.

4.1 The ICPL Algorithm
ICPL is a tCA generation algorithm proposed by Johansen

et al. that has been recently published in [13]. They per-
formed a comparison with three other tCA generation algo-
rithms (i.e. CASA [11], IPOG [18] and MoSo-PoLiTe [20]),
showing that ICPL overall has a better runtime performance
and also tends to generate smaller tCAs. This is the main
reason why we chose to use ICPL for our evaluation.

ICPL is an adaption of Chvátal’s greedy approach to solve
the set-cover problem. They use the fact that a (t-1)-wise
CA is always a subset of the t-wise CA [10] to recursively
build up a tCA. Moreover they parallelize ICPL to improve
its performance.

In very simplified terms ICPL performs three steps:

1. If the tail of the recursion is not reached (i.e. t=1)
then call ICPL recursively with t-1.

2. Generate the set of all t-sets.

3. Remove t-sets that are invalid in FM and extract the
t-wise CA using the results of call t-1.

We enhance ICPL by applying our reduction rule in step
2. Instead of returning all possible t-sets that can be formed
by features in feature list FL, we return only the t-sets that
can be formed by those features in FL that are neither a
mandatory child feature nor the root node of the FM.

Figure 2: Histogram of obtained Speedup in %

4.2 Results Obtained
We performed our evaluation using a Windows 7 System

running at 3.2Ghz on an Intel Core i5, and with RAM of
8GB. We used 146 publicly available FMs, where 154 are
from the resources homepage of [13] and the others where
obtained from the SPLOT website [1]. The number of fea-
tures of these models range from 9 to 172. For each of these
models we ran ICPL and our adapted version of ICPL a
hundred times to generate 3-wise CAs. Where the 3-wise
coverage is the highest one that is supported by the imple-
mentation provided by Johansen et. al.

The median execution time of ICPL is between 16ms and
9 minutes. We obtained a median speedup of 13% using our
reduction rules and a maximal speedup of 88%. For 2 of the
146 feature models our adaptations lead to a slower median
execution time. Figure 2 summarizes the speedups obtained
in a histogram. For 69 models the recorded speedup is less
than 10% but note that most of these models (i.e. 66) are
rather small with only 20 or less features. ICPL needs time
to read in the feature model, initialize variables, synchro-
nize threads etc. We believe that ICPL spends for small
models most of its execution time on these processing steps,
therefore our reduction rules cannot gain more speedup.

Figure 3: Histogram of the Reduction of Possible
t-sets in %

Consider now Table 1. It summarizes the recorded results
of the 12 largest feature models used for our evaluation.
The column labeled with #f corresponds to the number of

4Notice that we did not include the four largest models in
our evaluation because ICPL requires a large cluster of at
least 8 Cores and 128GiB of RAM for its execution.

Feature Model #f #i Original [ms] Modified [ms] Speedup [%] t-set [%] tCA [%]

Arcade Game 61 19 1187.0 811.0 32 68 6
Reuso-UFRJ-Eclipse1 72 18 3854.0 1811.0 53 58 1
J2EE web architecture 77 28 2669.0 1210.0 55 75 1
Berkeley 78 19 8713.5 3246.0 63 57 3
Billing 88 12 2091.0 1576.0 25 36 0
Model Transformation 88 18 6186.5 3828.5 38 50 -2
Coche ecologico 94 40 9010.0 5227.0 42 81 -1
UP estructural 97 17 10983.0 9057.0 18 44 2
Violet 101 3 48915.0 50233.0 -3 9 -6
xtext 137 42 44055.5 11646.5 74 67 6
Test 168 52 545089.5 64827.5 88 67 -1
Printers 172 49 180891.0 155658.0 14 64 1

Table 1: Recorded Results of Largest Models

features of the FM and #i represents the number of features
that could be ignored for the tCA generation, i.e. the root
feature plus the number of features that are in a mandatory
relation with their parent. The column labeled with t-set
[%] contains the number of reduced possible t-sets and the
column labeled with tCA [%] contains the change in size of
the generated tCAs.

Among the twelve largest feature models the Violet FM
is the only one for which we did not gain a speedup, because
only 3 out of 101 features could be skipped during the tCA
generation. Thus it is not surprising that our reduction rules
do not have much effect. The most speedup was recorded
for the Test FM. The original version of ICPL terminated
after about 9 minutes, while the version of ICPL using our
reduction rules needed only 1 minute to generate the tCA.

The percentage of reduced possible t-sets is depicted in
Figure 3. For a majority of feature models more than 50%
of all possible t-sets do not need to be considered during the
tCA generation. For only 5 models less than 20% can be
reduced.

Finally a comparison of the generated tCAs is shown in
Figure 4. Our reduction rules do not tend to lead to smaller
or bigger tCAs in general. For 47 of 146 FMs we produced
on average smaller tCAs and for 55 the average size of the
produced tCAs were larger. The average difference of the
size of the generated arrays over all runs for all models is 0.

5. RELATED WORK
Combinatorial Testing has shown great potential to detect

interaction faults. Different techniques have been applied to
generate test suites, such as greedy algorithms, search based
techniques and mathematical methods. Many of the pro-
posed test generation algorithms do not support constraints
and simply ignore them [19]. The remainder of this sec-
tion describes three t-wise CA generating algorithms that
do support constraints and presents work by Segura that is
similar to our second reduction rule.

Johansen et. al present the ICPL Algorithm [13] that ap-
plies a greedy approach to generate tCAs. It is an extension
to the algorithm they introduced in [12], with several en-
hancements made. They use for instance the fact that some
of their procedures are data independent, hence they par-
allelized as many steps as possible. Moreover they use the
fact that a (t-1)-wise CA is always the subset of a t-wise
CA [10] to apply recursion. This recursive approach enables

Figure 4: Histogram of the Change in Size of the
tCAs %

them for instance to speed up the detection of invalid t-sets.
They evaluated their approach using 19 feature models. For
the three largest models, having between one thousand and
seven thousand products, they were not able to generate the
3-wise CAs5.

Garvin et al propose CASA [11], where they use a meta-
heuristic search technique, simulated annealing, to generate
tCAs. They compared different versions of their implemen-
tation with a greedy algorithm showing that while the sim-
ulated annealing approach has a longer run time, the gener-
ated tCAs tend to be on average 25% smaller.

Oster et. al present the Model-based Software Product
Line Testing framework (MoSo-PoLiTe) [20]. Their frame-
work can be used to generate CAs for pairwise testing. First
they flatten the FM to convert it into a constraint solving
problem (CSP). Next they apply a subset extraction algo-
rithm, that uses forward checking solving on the CSP corre-
sponding to the input FM, to generate the 2-wise CA. It is
part of their future work to also evaluate MoSo-PoLiTe on
3-wise and 4-wise CAs.

Segura use in [23] the concept of atomic sets to simplify
FMs, i.e. features that form an atomic set are united to
a single node in the FM tree. Their experiments show im-
provements in runtime and memory usage when some of the
operations of the FAMA tool are performed. This FM sim-
plification is similar to our second reduction rule, as it elimi-

5For two of these models they generated an array that covers
1/8th of the 3-sets, which is in our opinion no 3-wise CA.

nates all mandatory child features in the FM tree. However,
our reduction rules do not alter the used FM, they rather
determine which features need to be considered to determine
the set of valid t-sets.

6. CONCLUSIONS AND FUTURE WORK
In this research-in-progress paper we propose a set of re-

duction rules to reduce the number of t-sets that have to
be covered by any t-wise CA generation algorithm, without
weakening the strength of the generated arrays. We evalu-
ated these rules by adapting ICPL [13], where we recorded
speedups of up to 88% in median execution time.

Our reduction rules are not only applicable to ICPL, but
to any tCA generation algorithm. Hence, we plan to evalu-
ate our rules also on CASA [11] and MoSo-PoLiTe [20]. We
also plan to explore Search Based algorithms such as that
presented by Ferrer et al. [9].

Additionally we have one more reduction rule in mind,
which claims that any t-set that contains a feature f and
one of its descendants does not need to be covered. It is
part of our future work to formally proof this claim and to
extend our current evaluation by also considering this rule.

Acknowledgment
This research is partially funded by the Austrian Science
Fund (FWF) project P21321-N15 and Lise Meitner Fellow-
ship M1421-N15.

7. REFERENCES
[1] Software Product Line Online Tools(SPLOT), Accesed

July 2011. http://www.splot-research.org/.

[2] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic
construction of sets for k-restrictions. ACM
Transactions on Algorithms, 2(2):153–177, 2006.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE TSE, 30(6), 2004.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later:
A literature review. Information Systems, In Press,
Corrected Proof:–, 2010.

[5] M. Cohen, M. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
Software Engineering, IEEE Transactions on,
34(5):633 –650, sept.-oct. 2008.

[6] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] E. S. de Almeida, C. Schwanninger, and D. Benavides,
editors. 16th International Software Product Line
Conference, SPLC ’12, Salvador, Brazil - September
2-7, 2012, Volume 1. ACM, 2012.

[8] E. Engström and P. Runeson. Software product line
testing - a systematic mapping study. Information &
Software Technology, 53(1):2–13, 2011.

[9] J. Ferrer, P. M. Kruse, J. F. Chicano, and E. Alba.
Evolutionary algorithm for prioritized pairwise test
data generation. In T. Soule and J. H. Moore, editors,
GECCO, pages 1213–1220. ACM, 2012.

[10] S. Fouché, M. B. Cohen, and A. A. Porter.
Incremental covering array failure characterization in

large configuration spaces. In G. Rothermel and L. K.
Dillon, editors, ISSTA, pages 177–188. ACM, 2009.

[11] B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Software
Engineering, 16(1):61–102, 2011.

[12] M. F. Johansen, Ø. Haugen, and F. Fleurey.
Properties of realistic feature models make
combinatorial testing of product lines feasible. In
J. Whittle, T. Clark, and T. Kühne, editors,
MoDELS, volume 6981 of Lecture Notes in Computer
Science, pages 638–652. Springer, 2011.

[13] M. F. Johansen, Ø. Haugen, and F. Fleurey. An
algorithm for generating t-wise covering arrays from
large feature models. In de Almeida et al. [7], pages
46–55.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[15] R. M. Karp. Reducibility among combinatorial
problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

[16] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr.
Software fault interactions and implications for
software testing. IEEE Trans. Softw. Eng.,
30(6):418–421, June 2004.

[17] J. Lee, S. Kang, and D. Lee. A survey on software
product line testing. In de Almeida et al. [7], pages
31–40.

[18] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. Ipog: A general strategy for t-way
software testing. In ECBS, pages 549–556. IEEE
Computer Society, 2007.

[19] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv., 43(2):11:1–11:29, Feb.
2011.

[20] S. Oster, F. Markert, and P. Ritter. Automated
incremental pairwise testing of software product lines.
In J. Bosch and J. Lee, editors, SPLC, volume 6287 of
Lecture Notes in Computer Science, pages 196–210.
Springer, 2010.

[21] K. Pohl, G. Bockle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

[22] A. Reuys, S. Reis, E. Kamsties, and K. Pohl. The
scented method for testing software product lines. In
T. Käkölä and J. C. Dueñas, editors, Software Product
Lines, pages 479–520. Springer, 2006.

[23] S. Segura. Automated analysis of feature models using
atomic sets. In S. Thiel and K. Pohl, editors, SPLC
(2), pages 201–207. Lero Int. Science Centre,
University of Limerick, Ireland, 2008.

[24] E. Uzuncaova, S. Khurshid, and D. S. Batory.
Incremental test generation for software product lines.
IEEE Trans. Software Eng., 36(3):309–322, 2010.

[25] P. Zave. Faq sheet on feature interaction.
http://www.research.att.com/ pamela/faq.html.

